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In this paper a treatment to sharpen discontinuities for shock capturing methods is intro- 
duced. The treatment is a modification of the underlying scheme that makes the computation 
on each side of the discontinuity use information only from that side. The modification is done 
by adding specific artitical terms to the underlying scheme. The correctness of the discon- 
tinuity’s location is guaranteed by some limitation of the artiticial terms. Shock tracking ideas 
are involved in the treatment: however, no lower dimensional grid is needed to tit the discon- 
tinuity. A high resolution technique is set up to find out the location of the discontinuity 
within the cell. Several numerical examples including spontaneous shocks, linear discontinuity 
calculations, and the blast waves problem are presented. ‘cl 1991 Academic Press, Inc. 

1. INTRODUCTION 

The initial value problem for hyperbolic conservation laws is as follows: 

l4[+f(II),=o (l.la) 

U(X, l j = Us, (Lib) 

where II = (u, , 14>, . . . . II,,) ’ is a state vector and f(u), the flux, is a vector-valued 
function of nr components. The system is hyperbolic in the sense that the 111 x m 
Jacobian matrix 

.4(u) = cyf(uj/au 

has ~1 real eigenvalues 

and a complete set of m linearly independent right-eigenvectors. A weak solution to 
(1.1) is a bounded measurable function u(x, t) that satisfies 

jm jm (u~,+f(u)~,)dwxdt+ jm uo~x)~(~x,~)dx=~ (1.2) 
0 -a, -x 

forall~~C~((-~.~jxCO,~G)j. 
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The main cause of the numerical difficulty in shock capturing methods is the 
occurrence of discontinuities. The fluid state variables may jump across shocks, and 
they may have discontinuous derivatives across characteristics. Most currently used 
shock capturing methods ignore discontinuities by applying almost the same 
numerical scheme everywhere in the flow. As a consequence, the consistency of the 
difference scheme with the partial differential equation is based on the assumption: 
that the exact solution to the problem is smooth; on the other hand, at the discon- 
tinuities. the exact solution lacks the smoothness necessary for the consistency. That 
is why oscillations and smearing of discontinuities often occur in the computations. 

Many efficient finite difference approximations to 11.1) have been developed. 
Particularly, the E.NO schemes lately developed by Harten, Osher, Engquist, and 
Chakravarthy (see [l-4] ) have been very successful in dealing with shocks. These 
schemes use a local adaptive stencil to obtain information automatically from 
regions of smoothness when the solution develops discontinuities. Obviously, the 
idea of picking up information from the smooth parts is an attempt to prevent 
the computation from crossing a discontinuity; in other words, it tries to make 
the numerical flux use data only from one side of the discontinuity. As a resalt, 
approximations using these methods obtain uniformly high order accuracy right up 
to discontinuities, while keeping a sharp, essentially nonoscillatory shock transition. 

Two improvements of EN0 schmes that should be mentioned are: 

In [6, 7] Shu and Osher constructed pointwise EN0 schemes by applying the 
idea of an adaptive stencil to the numerical flux and using a TVD 
type time discretization. This greatly eases the implementation and simplifies the 
programming. 

In [8] Yang designed an artifical compession method for EN0 schemes by a 
modification of the slope in the reconstruction procedure. This technique efficiently 
improves the performance of the EN0 schemes at contract discontinuities. 

Recently, IIarten introduced a concept of “subcell resolution” to the ENO 
schemes The main ingredient is the observation that the information in the cell 
average of a discontinuous function contains the location of the discontinuity 
within the celi. Using this observation one can modify the EN0 reconstruction to 
recover accurately any discontinuous function from its cell everage. The modifica- 
tion of the EN0 reconstruction, which extends the reconstruction function in each 
left and right adjacent cell to the recovered location of the discontinuity, makes the 
numerical flux only depend upon the data from one side of the discontinuity. .As a 
consequence, it effectively prevents the computation from crossing the discontinuity. 
The application of this technique to the linearly degenerate characteristic field 
greatly sharpens contact discontinuities. 

Six years ago the author began to work on a treatment of discontinmries for 
shock capturing methods, which applies to arbitrary schemes (see [I 111)~ although 
the treatment is similar to Harten’s ‘“subcell resolution,” it has a different origin. 
The essence of the treatment is that in the vicnity of the critical intervals that are 
suspected of harboring discontinuities, the underlying difference scheme is modified 
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so that the computation on each side of the discontinuity only involves the 
numerical solution and its extrapolated data from that side. The modification is 
implemented by adding specific artificial terms to the underlying scheme. Limitation 
of the artificial terms guarantees the exactness of the discontinuity’s location. Since 
the computation is not done across the discontinuities, the spurious oscillation and 
the smearing of discontinuities are essentially eliminated. We believe that the basic 
idea presented here also applies to the multidimensional computations. 

The paper is organized in the following manner: Section 2 describes the treatment 
in detail. Section 3 describes the incorporation of the treatment into difference 
schemes. Section 4 contains a numerical analysis of the treatment and obtains some 
theoretical results. Section 5 generalizes the treatment to the Euler equations of gas 
dynamics. Section 6 presents several numerical examples to show the performance 
of the treatment. 

2. TREATMENT OF DISCONTINUITIES IN THE SCALAR CASE 

We begin with the scalar, convex problem; i.e., both u and f in (1.1) are scalar, 
and f” 2 0. The conservative difference scheme is 

(2.1) 

where I,$ = llh(.xj, t,,) denotes a numerical approximation to the exact solution 
Ojui, t,,), and fJ~+ls2=ft(T-k+1, .-, u;+~) is the numerical flux dependent on 2k 
variables. The flux is consistent with (l.la) in the sense that 

f(u, 11, . ..) u) = f(U), (2.2) 

A is the mesh ratio; i.e., A= z/11, where z and h are the time and space increments, 
respectively. 

There are two versions of the treatment, an x version and an X- t version, and 
we first describe the x - t version. Suppose that [xi,, xi,+ 1] is a critical interval on 
level n suspected of harboring a shock (or a contact discontinuity), which we refer 
as a generated intertlal; in addition, the numerical solution on each side of it is 
“smooth” (as shown in Fig. 2.1). The treatment begins by extrapolating the numeri- 
cal solution from each side of the interval to the other side, and obtaining a set of 
extrapolated data u;+~, u;;;fk+,, . . . . u:+, ~j”;;~, uJ:.c2, . . . . u;;~+~ (see Fig. 2.1). 
Then the unknown uJ”’ on the next level is computed in such a way that on each 
side of the shock it is evaluated only with z.$ and the extrapolated data from that 
side. For example, if point (xj, tn + , ) is considered on the left of the shock, UT ‘I is 
computed as 

u; + 1 = 2.l; - q&y;, - f&) (2.3) 

rather than (2.1), where 
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5, xj,+l 

FIGURE 2.1 

Also if the point (x~, t, + , ) is on the right of the shock, U; + ’ is computed as 

Un+l=U,~-Il(~,~~~Z-.~~-:,?j J (2.5) 

rather than (2.1), where 

&=j=(u/“Ltk+l )...) u;;+,u;,,i’ . . . . zq+& (Z.S) 

In doing so, the computation is completely prevented from crossing the shcck; as 
a result, the oscillation and smearing are essentially eliminated. 

If the shock has a nonzero speed, the generated interval must move to the left or 
to the right as time increases. Therefore, there are three possibilities for rhe 
generated interval on level n + 1: it is the left adjacent cell [x,, _ i Y xi!& it is the right 
adjacent cell [.xI1+ i, xj, + 2], or it is the same cell [x,,, x~, f i], and the computation 
in each case is different. In the first case, the point (xi,, t,,+ I! is on the right of the 
shock, and u;‘+’ is computed as 

II,:’ I = q; + -qfi;~l.7-.~;~fi,2)‘ (JTj) 

In the second case, the point (x,,, + i, I,,+ i ) is on the left of the shock, and BY,:: is 
computed as 

qi: = z4;; .; , - I(&;:; 1- $&). ( 2.8 ‘iI 

In the third case, the point (xjl, t12+ i ) is on the left. whereas the point (x j, + , + crZ + i p 
is on the right; thus, u,“l’i and z$z\ are computed by (2.3) and (2.5 )? respectively 
(as shown in Fig. 2.2). A critical problem occurs when the generated interval moves 
to an adjacent cell-how to get the correct shock speed? In [I], this problem is 
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FIGURE 2.2 

dealt with by using the location and the speed of the discontinuity; however, in this 
paper it is dealt with in a simpler way. 

The modified scheme is not conservative across the cell [-xi,, xj, + i]; nevertheless, 
it can be written into a conservation-like form by introducing two auxiliary 
variables; i.e., it can be written as 

where 

(2.9) 

(2.10) 

The two auxiliary variables, one along the spatial direction while the other along 
the temporal direction, are referred to as artcjkial term. and they are different in 
the three cases. In the first case, 

P” / + 1.‘2 =o for all j # j, 

p;,-1;2= -qi:+(u::-u.~.~+)+~~(j’l:,_,:2-~f-,;2) 

q;-1-LO for all j#j, - 1 
n+ 1 q,,-~ 1 = -px- 1:2. 

(2.11) 

In the second case, 

p;I-,..2=o for all j #jr 

Pi: + 1.2 = 4; + A(Jy$;2 - fl;;1;21 

q;+n+‘=o for all j#j, + 1 

s;,;: = qyl + (zq;;, - u;, + ,) + A($;;,;2 - “tyji2). 

(2.12) 

In the third case, 

P;+ I,‘2 = 0 for all j 

q;+L, for all j#j, (2.13) 

q;,+ ’ = q;, + 4&:,.‘2 - fi; I,‘2 ). 

As opposed to uy, the quantity u,” - qy is conserved in the modified scheme (2.9). 
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The artificial terms exist only in the close vicinity of the generated interval; in 
fact. they equal zero when \j - j,l > 1. Now let us study them in a weak sense. 
Suppose tl(.-C, I) is a piecewise smooth solution to IVP (1.1) that contains a unique 
shock, within the interval, [IX,,. .Y~,~+ I ] (n = I, 2, . ...), the generated interval on each 
time level. Denote L’(.Y~, t,,) by P;, the value of the solution at grid point [I,- t,?). 
Suppose that 4(x, t) is a twice differentiable test function with its support in the 
upper half plane. Denote 4(x-, t,j by 4.; also. Consider the conservative difference 
scheme with numerical flux f defined in (2.10). According to its definitiorz, .,??+ ! 3 
always contains smooth data; therefore, 

if both the scheme (2.1) and the extrapolation are of the rth order. Thus, when t3e 
shock does not cross the support of c#, 

At the grid points xi, and xj, + 1, owing to the discontinuity, 

accordingly, the right member of (2.15) is 0( 1) rather than Q(h’) is the shock cuts 
the support of 4 with a certain length. However, according to the definition of E; 
and 4. 

consequently, 

The left sum in (2.15) or (2.18) is the discretization of the integral in (1.2) with 
flux x which always gets smooth data from each side of the shock. The rig 
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member in (2.17) is the truncation error at the discontinuity in a weak sense, and 
the artificial terms are the principal part of it. This means that artificial terms 
should always take a relatively small value during the computation. Since p is 
related to 4, we only take care of q. This gives the following criterion for the 
generated interval’s movement. Calculate qynI,l for each case, where j, + r is the left 
endpoint of the generated interval on level y1+ 1, compare them, and then choose 
the case that corresponds to the smallest jqyn+:). The numerical examples presented 
in Section 6 show that this cirterion is effective. 

The x- t version of the treatment requires artitical terms along the spatial direc- 
tion as well as the temporal direction, and the generated interval that contains the 
discontinuity includes only one cell. In contrast, the x version of the treatment 
involves only artificial terms along the spatial direction and the generated interval 
includes two cells. For a one-cell interval, it is impossible to let the computation on 
each side of it only use information from that side without involving an auxiliary 
term along the temporal direction. That is why the generated interval in the x 
version should have two cells. 

Suppose C-q-13 xJ,+J is a generated interval. The treatment begins by 
extrapolating the numerical solution from each side of the interval to the other side 
and obtaining a set of extrapolated data u;&+- i, . . . . ,I;+, UT;-, . . . . u;;;~+ ,. Likewise, 
the evaluation of the unknown UT’ ’ uses information only from one side of the 
discontinuity. If point (x,, t,+l) is on the left of the shock, uy+r is computed by 
(2.3) or (2.8) with flux 

J?jn;;2=f(u;-k+l, . ..) UT-,, If;-, . . . . uri’,,,. (2.19) 

If point (xj, t,, + 1) is on the right of the shock, z$” is computed by (2.5) or (2.7) 
with flux (2.6). 

The modified scheme can be written as 

(2.20) 

where 7 is defined in (2.10). Similarly, there are three possible locations for the 
generated intervals on level II + 1, and the relevant artificial terms in each case are 
as follows: In the first case, in which the generated interval moves one cell to the 
left, 

P& 112 = 0 forall j#j,-1 

Pi: - I,‘2 = ujl - ‘j[ %+ - n(&,, - J?i:.&J. 
(2.21) 

In the second case, in which the generated interval moves one cell to the right, 

(2.22) 
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In the third case, in which the generated interval remains in the same cell 

IJ;+ ,,‘2 = 0 for all J”. (2.23 ; 

However, Ihe value of the numerical solution at the middle point of the generated 
interval is computed using the information from both sides of the discontinuity. In 
the first case, 

ul:l:=u~,+(u,:~l-uj:.+)-/l(“~~~+I 2-f,y&); 

in the second case, 

(2.24) 

u;,~~=u;+(u;+: - u;- ) - /l(&y~>,;, - Jy,,,, ); {?.25) 

and in the third case, 

UT,' 1 = u,: - 4f,& - .Q& (2.26) 

in the x version, the value at the middle point plays the same role as 9 does in x - E 
version. Being a transition point of the shock, it should be close to the arithmetic 
mean of the shock’s left and right states; in other words, 

luy,-0.5(u;:+,+u~,~,,)l (2.2-i \ 

should always take a relatively small value. This gives a criterion for the generated 
interval’s movement. 

Remark 2.1. The subcell resolution in [l] involves only the artificial terms 
aiong the spatial direction; therefore, it is an x version. If the basic scheme is the 
EN0 scheme, the I version of this treatment is similar to the subcell resolution. 

Remark 2.2. If the underlying scheme (2.1) and the extrapolation are of order I~, 
the modified schemes of both versions still have an ordinary truncation error of the 
same order in the vicinity of the generated interval. This means that the treatment 
will cause little trouble if it captures a generated interval. that does harbor a discon- 
tinuity. 

3. INCORPORATION OF THE TREATMENT INTO DIFFERENCE SCHEMES 

(1) Generation of Generuted Intervals 

The treatment in this paper can be used as a front tracking technique. The front 
tracking methods equipped with this treatment do not need a lower dimensiona! 
adaptive grid for resolving the discontinuity as the ordinary front tracking does (see 

13, 14]), and the relevant algorithm is much simpler than the ordinary one. To 
incroporate this treatment into a shock capturing difference scheme, a mechanism 
to detect discontinuities is necessary for finding out where and when a shock starts. 
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That is to say, a criterion for the generation of intervals must be included in the 
algortihm. This is very critical in dealing with a spontaneous shock. 

The criterion needs a measure of nonsmoothness that is relatively big in 
candidate cells. A simple choice is 

(3.1) 

The main drawback of this choice is that we could neglect weak shocks (or contact 
discontinuities) and apply the treatment to intervals that have relatively large slopes 
but still should be regarded as “smooth” according to a global observation of the 
numerical solution. A better measure of nonsmoothness involves high order 
difference quotients of numerical solution. 

The criterion suggested in [1] is based on the EN0 reconstruction and involves 
high order difference quotients. An important point in the criterion is that the 
measure of non-smoothness in a candidate interval attains a local maximum. If 
/u;+ i - $1 is the measure of non-smoothness, it requires that lz.$?+ i - u;l is the 
candidate cell be greater than both 1 z$ - uJ’- i 1 and I$+ z - u;+ i 1. This criterion 
mostly avoids neglecting weak shocks and contact discontinuities. 

The criterion in this paper is a combination of the two above. The measure of 
non-smoothness ) UT+ i -L ~$1 in a candidate cell is greater than a constant CI and 
attains a local maximum as well. 

The generated interval in the x - t version includes one cell; in contrast, the 
generated interval in the x version includes two cells. For this reason, the candidate 
cells in the x version should be extended to intervals of more than one cell. For 
adjacent cells, we merge them into one interval; for isolated cells, we extend them 
in the following way: Check the difference quotient in each left and right adjacent 
cell, then extend the candidate cell to the cell with greater difference quotient. In 
doing so we expect to eliminate spurious oscillations. 

In the case that f rr > 0, the additional conditions u:+ i -u; < 0 in the ?c- t 
version and $‘, + i - uJ _ i < 0 in x version are required so that the treatment is only 
applied to shocks, not rarefaction waves. 

After a generated interval is indentified, it is treated in a front tracking way. That 
is the interval that contains the discontinuity coming from the preceding level 
should be accepted as a generated interval. For example in the x - t version, when 
[-xi,, xj, + i] is a generated interval on level n, [x~, -i, xi,] in the first case, 
bj, + 1) -xi, + 2 ] in the second case, and [xi,, xi, + ,] in the third case are the 
generated intervals on level n + 1. 

The criterion for identifying a discontinuity described in this paper is still 
preliminary and some more efficient criterions are under investigation. Another 
measure of nonsmoothness suggested is 

bj+,-Ujl 
IUj-Uj- 1)’ 

(3.2) 

which is used by many flux-limiting schemes (see [9]). By comparison with (3.1), 
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which is a dimensional measure and so must be adjusted for each individual 
problem, (3.2) is a nondimensional measure and, therefore, independent of the 
individual problem. Also, a criterion based on the idea of a local adaptive stencii 
in ENQ schemes (see [l-4]) is under investigation. For each cell, we choose a 
stencil that has the smallest divided differences of the numerical solution up to a 
certain order. In a candidate cell, its stencil and the stencil of its adjacent cell do 
not overlap. 

No criterion can distinguish discontinuities strictly from the smooth parts or rhe 
numerical solution especially when spontaneous shocks are involved. This mzans 
that no one can avoid the “accidental effect” of the treatment to the smooth parts. 
However. Remark 2.2 indicates that this accidental effect is tolerable. 

Pn Section 2 we showed that the treatment can be implemented by adding the 
artificial terms defined in (2.1 l)-(2.13) or (2.21)-(2.23) to the difference scheme 
with flux 3 Similarly, in this section we show that the treatment also can be 
implemented by adding specific artificial terms to the underlying scheme (2.1). This 
makes the algorithm easy to program. 

First, we discuss the x - t version, for which the modified theme can be w-ritten 
as 

u; + 1 = If; - i.(jy+ l 2 - ~-l,z)+P~+:.2-p~:i~,.2+qi:!+i-q:I. -i i 1 .3 

The artificial terms in each case are as follows: In the first case, in nhich the 

and 
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In the third case, in which the generated interval remains as the same cell, 

PT+ I/Z = 4fi+ 1,/I - .Q&,, jl-k+l<j<jl-l, (3.12) 

PT+ l/2 = A$+ 112 - Jy&2), j, <j<j, +k- 1, (3.13) 

and 

q;+‘=(), VjZ j, 

q;,+ I = q;, + 4Jy;,,., - jJy;l,/2). 
(3.14) 

The artificial terms along the temporal direction in (3.7), (3.1 l), and (3.14 j are just 
the same as those in the preceding section; therefore, they determine the movement 
of the discontinuity. 

The modified scheme for the x version can be written as 

ui”“=~li’-~(~,~+,;z-~,~~1;2)+p~+,,2-ppr_1,’2. (3.15) 

The artificial terms in each case are as follows: In the first case, in which the 
generated interval moves to the left, 

P,“, Ii’2 = my+ ,;2 -fi;&), jl-k<j<j,-2, (3.16) 

Pi: - 10 = “i: - UI, ns + + qfi- I,‘2 - $yf1,‘2)r (3.17) 

and 

P:‘, ,,2 = My* I,‘2 - fig:/2 1, jr<j<j,+k-1. (3.18) 

In the second case, in which the generated interval moves to the right, 

P,“+ I.‘2 = 4ri”t. ,,/2 - jy;& h jl-k<j<j,-1, (3.19) 

Pj:+,;2=Ui:.---Ui:+/2(~~t1:2-~~-t,!2), (3.20) 

and 

~in+~,~=;l(~++~~-~~~~~), jl+ldjdjl+k-1. (3.21) 

In the third case, in which the generated interval remains the same interval, 

P;+ Ii2 = q+ 112 - fl;::.,,, ji-k6j<jl-1, (3.22) 

and 

P.;+ L:z = A@+ LI2 -.&L,i, jIdjdjl+k-1. (3.23) 

The value of the numerical solution at the middle point of the generated interval, 
.u:, determines the movement of the generated interval. 



TREATMENT OF DISCONTINUITIES 43-j 

(3 ) High Resolution Technique 

The movement of a discontinuity fully depends on the artificial term along the 
temporal direction in the x - t version, or on the value of the numerical solution 
at the middle point of the generated interval in the x version. This means ?hat 
these data contain the location of the discontinuity; thus, they can locate the 
discontinuity within the interval. We refer to this technique as a “high resolution 
technique.” In the s - t version the coordinate of the discontinuity’s location. s”. is 
computed by 

while in the x version it is computed by 

It is easy to verify that when the problem solved is a Riemann problem containing 
a moving shock between two constant states, both the numerical solution and the 
shock location obtained by the high resolution technique are exact. In fact, the 
early idea of this treatment was motivated from this example. 

When the initial value of the problem contains jumps that develop shocks or con- 
tact discontinuities, (3.24) and (3.25) also give the initial data for the artificial. term 
4 in the x - ! version and the middle point value of the numerical solution in the 
x version. At this moment sn is known and 4;: or z$, are calculated. But when the 
shock develops spontaneously in the computation, the artificial term q of the first 
detected generated interval in the x - t version is zero, while the middle point value 
of the first detected generated interval in the x version is the original value. 

(4) Interaction of Generated Interoals 

Until now we have only studied the case that involves a single discontinuity. 
However, the IVP (1.1 j may involve several shocks and contact discontinuides, 
which may collide with each other. For this reason, the interactions of generated 
intervals must be studied. 

Only the interaction in the x - t version is studied in this paper. The interaction 
in the x version can be treated similarly. Without loss of generality only the inter- 
action of two generated intervals is considered. Suppose that L-u,, , x,, + )] and 
[.xjZ3 xjl + 1] are two generated intervals on level n (as shown in Fig. 3.1). If the 
extrapolation in the treatment is of the rth order, the evaluation of the extrapolated 
data needs r$l data from one side of the discontinuity. When the two generated 
intervals are so close that the number of grid points between them is less than r t ‘;, 
the rth order extrapolation is impossible. In this case, the order of the extrapolation 
is reduced; in other words, IA;;‘, m ~ . . . . $;.Tn and u;;; I.,M, . . . . $;I~” I,m are evale;ated 
by an extrapolation of the order lower than r, where tin:,’ and. 147; are the 
extrapolated data obtained from the numerical solution between the two generated 
intervals (see Fig. 3.1). 
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n, - 

x. 
71 

x. 
%+I 

x. 
32 

'j2+2 

FIGURE 3.1 

When the number of grid points between the two generated intervals are less 
than 2k, the stencils of some of them will cross both the two generated intervals. 
At this moment, the numerical flux 

will be used so that the computation consistently picks up information from one 
side of the discontinuities. 

The collision of generated intervals happens when the generated intervals meet, 
by which we mean that j, =jl + 1. Two kinds of situations should be studied. 

(1) The left (right) generated interval moves to the right (left), while the right 
(left) one remains in the original cell (as shown in Figs. 3.2a, b). As a result, there 
are two overlapped generated intervals on level II + 1. Treat each generated interval 
individually, and denote the corresponding artificial terms along the temporal direc- 
tion by q;,; I and 4;::’ (q~lT1l,r 
4;1:1 l + s$’ 

and qy,tll,,), respectively. Then take q;,+ I (q;,T-:) = 
(qJ!,+ll I + q;,f’,,,), and accept the two overlapped generated intervals 

on level n + 1 as a ‘single one. 

(2) The left generated interval moves to the right while the right generated 
interval moves to the right (see Fig. 3.2~). There are two different way to deal with 
this case. The first way is to accept [x,,-~, x~,+ 1] on level n as a single generated 
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“j,-1 Xj 1 xj.-i 

CC) 

FIGURE 3.2 

interval; however, it includes two cells. For this reason, the treatment of the 
generated interval with two cells will be described. The treatment is a simple exten- 
sion of the treatment with one cell. First, the numerical solution is extrapolated 
from each side of the interval to the other side. Then the numerical solution on the 
next level is computed by (2.3.b(2.8). Nevertheless, unlike the case of a generated 
interval conraining one cell, there are four possible cases for the movement; i.e., the 
generated interval on level n + 1 could be one of [.yj, _ 2, xj,- r], [x,, _ :, s,, j, 
I-yjt 9 x.i, + 111 and C-xj, + L 2 -xj, + 1 1. The artificial terms in each case are calculated by 
solving the following system: 

lij ‘I + I = zi:’ - E.(jy+ I ,Z - g l;z) + pq, *;2 - pp 1,> - 9.:‘. j<k 

n+l- 
uk -“;:-~(~~+I:2-~~~,.iz)+p;:+,:z-P;:~,:2+q~iL-q~, j=k (3.25) 

u;+&:;;- J”(j;“, I;2 - j”j- 1 :z) + p;+ ,,q - p.:- I,2 - 4;. j>k, 

where T,?+ i:2 is defined by (2.10), pJ: --3J2 = pi, + 3,2 = 0, and k is j, - 2, j, - 2, jI. or 
j, + 1. Compare \qk n + ‘l’s, and then choose the case that has the smallest jq; + ‘1. The 
implementation by adding specific terms to the underlying scheme also can be 
obtained in a same way as before. 

The second way, which is simpler than the first, is to hold the left generated inter- 
val and move the right, or conversely. Then the case is treated in the first wajr. 

5x1:9: ?-I2 
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4. ANAL.YSIS 

The numerical analysis in this section focuses on the influence of the treatment 
on the underlying scheme. Only the x - t version is discussed. The x version can be 
discussed similarly. 

Assume uJ’ is a numerical solution to (1.1) with space increment h. obtained by 
the modified scheme. Denote by P,~(x, t) the piecewise constant extension of uJ, 
which is defined as 

v,(x, q=u,“, (j-~)II~s<(j+~)h,nsdt<(n+l)T. (4.1) 

In addition, a discrete discontinuity is a string of generated intervals located on 
each time level in which the latter results from the former. 

First, we prove a theorem, which is parallel to the results in [IO, 151. 

THEOREM 4.1. Assume that 13 a > 0, where A= z/h is the mesh ratio and a is 
fixed. dssume vJz(x, t) and its total variation are uniformly bounded with respect to 
h. Assume that the artiJicia1 terms along the temporal direction are uniformly bounded 
with respect to h. Assume that the number of discrete discontinuities involved in the 
solution is uniformlq~ finite with respect to h. Then there exists a weak solution solu- 
tion to (l.l), which is the limit of a convergent sequence selected from (L~,~}. 

Proqf The convergent sequence is obtained by Helly’s theorem in the same way 
as in [15]. Without confusion it is still denoted by (vh} and the corresponding 
numerical solution is denoted by uJ’. Denote by U(X, t) the limit function of the 
sequence, which is bounded and has bounded total variation. 

Multiply (2.9) by dying and sum it with respect to j and n. Apply summation by 
parts to it. We obtain 

According to its definition, 7 is also consistent with f(u) is the sense (2.2). Since 
the sequence converges to u(x, t), the left member of (4.2) converges to the integral 
in (1.2) as h tends to zero. According to the discussion in the last section, the 
artificial terms p are related to the artificial terms 4 and the numerical solution; 
thus, p is also uniformly bounded since q and the numerical solution are uniformly 
bounded. Because of the last assumption, the area of the region in which 
the artificial terms are nonzero is of O(h). Therefore, the right member of (4.2) 
converges to zero as h tends to zero. 
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The theorem assumes that the involved discrete discontinuities are uniformly 
finite, This implies that the exact solution is piecewise smooth A theoretic result 
without this assumption is under investigation. 

The assumption of the uniform boundedness of the numerical solution and its 
total variation and the assumption of the uniform boundedness of artificial term q 
are critical in the above theorem. The following part of this section studies rhe 
infiuence of the treatment on the variation of numerical solutions and artificial 
term q. 

In the study of the influence on the variation, we start with a TVD scheme that 
can be written as 

where 

and 

These schemes do not increase the total variation of a numerical solution (refer to 
[5, 16-j). Furthermore, we assume 

‘- I(f("j)-~j+,.2)+(f(~,+!)-ji;f!,2)l G /L.j~!-L.jl. (4.6) 

It is easy to see that (4.6) implies 

Such essetially 3-point schemes include, beside the standard 3-point schemes, 
several recently constructed second-order accurate converging schemes (refer to 
C161). 

The rth-order treatment is the treatment that uses the rth-order extrapolation. 

THEOREM 4.2. If the underlying scheme is a TVD scheme, the 0th order treatment 
keeps the TVD property in the vicinity qf a generated intewal when there is MG iu:;er- 
action of discontinuities. 

The term “vicinity” indicates the region the treatment affects. When the under- 
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lying scheme is of (2k + l)-point and [.x~,, xj,+ 1 ] is the generated interval, it is the 
interval [x~, _ k, .xjI + k + , 1. Thus, it is required to show that 

A +k 

Proof Assume that [xi,, x~,+ r] is a generated interval on level IL When 
j,<j, - 1, or j3j, +2, uj ‘+I is evaluated by (2.3) or (2.5). Since the underlying 
scheme has a TVD form of (4.3), 

and 

u; + ’ = ui” + C,$,,, A;+ 1 ,z 14 - CJFl ,2,1 A;- 1!2 u, j<j,-1, (4.9 1 

u; + ’ = u,; + c:‘&, A;+ I;z 14 - CJ’L-~,.~,~ A;-- , ,z u, j3jl +2, (4.10) 

where 

and 

(4.11) 

(4.12) 

Equations (4.11) and (4.12) satisfy (4.4). This means that the modified scheme still 
has a TVD form at these points but with different coefficients. 

When the generated interval on level n + 1 remains in [x.~,, -yi, ,~ r], uJ”1” and 
14;; t, : are still given by (2.3) and (2.5), respectively. Since the extrapolation is of 
zeroth order, 

(4.13 j 
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thus. 

A :f - 1:2 Ii= (1 - ce;;‘L.2 [-c;p,;:,,) q- 1;?.z4+ c;;::, 2.i A;; j 214 

A 
il + i 
.,, + ,;2:.t = c- /,--1.X! ;,-1,2u A ” (4.!6) 

A ” + 1 
~,,+j~=c~~~,'S;~,~3~,+j'~z4+(1-C~'~~~,~,,.)A~~+j.~titA~,,~.~l4. 

Obviously, both (4.14) and (4.16) with (4.9) and (4.1Oj lead to (4.8). The same 
conclusion is also true for the case *when the gerated interval moves to the Ief~. 
Thus, the proof is complete. 

When the order of the extrapolation is higher than 0, 14:13) and (4.15) a:e 
replaced by 

and 

where 

The appearance of the terms in (4.19) kills the TVD property in the vicinity of the 
generated interval. Nevertheless, these terms are only of O(A) if the numerical solu- 
tion is “smooth” on each side of the discontinuity. Hence, the error caused by them 
is also of O(h) on each time level. Therefore, the total variation of the numerica! 
solution will be uniformly bounded if the solution is piecewise smooth. 



440 DE-KANG MAO 

Finally, when the underlying scheme is not a TVD scheme, the numerical solu- 
tion obtained by the modified scheme still has uniformly bounded total variation if 
it is piecewise smooth without interactions of discontinuities. In fact, for each j, 

JUJI~:--u,“+‘Idlui”+,-u,“l+~l~+li,2-21?jNt1,3+J?II-,,.2). (4.20) 

The second term on the right in (4.20) is of 0(/f’) if the numerical solution is 
smooth. Therefore, 

(4.21) 
j= -x j= ~-x 

if the support of the solution is bounded. This implies that the solution has 
uniformly bounded total variation. 

Suppose that the solution has one discrete discontinuity, contained in the 
generated interval [s,, , .xi, $ r ] on level ~1. When the generated interval on level n + 1 
remains in the interval, 

Iz4i”=:-u~+‘l~Iu~+,--~~l+o(h2) (4.22) 

still holds for j# j, because the computation uses only the extrapolated data across 
the interval. For j = j,: 

~“~,~:-u~,+~~=~z4~+~-u~~+~~~~3~2-J?j:.~z,2~ 

+ 2 IJ7yli2 -jy;21. (4.23) 

The last two terms on the right in (4.23) are of O(h) due to the smoothness of the 
solution on each side. As a consequence, (4.21) still holds in this case. The same 
conclusion is true when the generated interval on level n + 1 moves to the left or 
to the right. Thus, the total variation of the numerical solution is bounded. The 
result is easily extended to the case of piecewise smooth solution without inter- 
actions. ’ 

The case that involves interactions of discontinuities remains to be studied. It is 
quite possible that the treatment of interactions does not affect much the bounded- 
ness of the total variation either. 

Now we study the artificial term q, starting with the zeroth-order treatment. 
According to (2.11)-(2.13), q on level n + 1 in each case at this moment is 

q;,t:=q;,+b,:+, -z4i:)+n(f(z~~,+,,-f(~j",,))+n(f(z4,:)-~,~~r,,,,), (4.24 j 

q;;:=:=q;+(u;-zu,“,+, )+n(f(~i:+,~-f(~~))+~(~:,,2-fc~l:+z)), (4.25) 

or 

qi:+‘=qi:+~(f(u~+,)--f(ul:j), (4.26) 

where [rJ,, xi, + i] is the gen erated interval on level n. The last terms on the right 
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in (4.24) and (4.25) are of O(A) if the numerical solution is smooth on each side of 
the interval. When the CFL-condition is satisfied for i.; i.e., ,? i.i”(u)l < 1, and A is 
small enough, one of q;?:, 4,:::. and q,, ‘I+ ’ is bigger than qy,, and one of them is 
smaller than q;,. The movement of the generated interval is determined by choosing 
the smaliest one among q;.;+ i, q.y,Ti, and q:+ ‘; therefore, q is uniformly bounded 
with respect to 11. 

Jf the order of the treatment is higher than 0, the artificial term q in each case 
is given as in (2.11)-(2.13). However, the difference between (4.24 j-(4.20) and 
(2.21)-(2.13) are of O(h); thus, the above discussion still holds. 

5. APPLICATION OF THE TREATMENT 
To EULER EQUATIONS OF GAS DYNAMICS 

The Euler equations of gas dynamics for a polytropic gas are 

where p> q, p, and E are the density, velocity, pressure, and total energy; respec- 
tivebj, IR = pq is the momentum and 7 is the ratio of specific heats. 

The eigenvalues of the Jacobian matrix A ( u ) = Qj”iiu are 

a, (24) = q - u, a,114)=q, L7,‘(24) = q + 11, i 5.2 j 

where c = (y~ip)~” is the sound speed. In this section the application of the treat- 
ment to the above system is described. 

In [I] the “subcell resolution” is applied to the linear degenerate characteristic 
field; i.e.> it is only applied to the second locally defined characteristic variabie in 
a (linear) field-by-field way. However, the treatmem in this paper is applied to dis- 
continuities of all different kinds in a nonlinear way. The treatment is only used ?o 
track the discontinuities; put more precisely, all the discontinuities start from the 
imitial level, and no new discrete discontinuity is generated during the compuration. 
Correspondingly. all the numerical examples of the Euler system reported in the 
next section are of piecewise smooth solutions with f”mite discontinuities No 
spontaneous shock is involved. 

Only the x - t version is concerned. We begin with a simple case that contains 
one discontinuity, on each side of which the numerical soiution is smooth. There 
are three different kinds of discontinuities in the Euler system: the left shock. the 
right shock, and the contact discontinuity. Therefore, the generated intervals are 
classified into three different kinds also: the left shock generated interval (LSGJ ). 
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the right shock generated interval (RSGI), and the contact discontinuity generated 
interval (CDGI), each of which is identified by solving the Riemann problem that 
has u: and 21: + , as its left and right states, where [x~, , .x~, + ,] is the corresponding 
generated interval. We denote the Riemann problem by M($, ~2 + i). The solution 
to the RP(ul,, , z$ + 1 ) in an LSGI or an RSGI has a relatively strong left or right 
shock, while the solution in a CDGI has a relatively strong contact discontinuity. 

Assume [.x~,, x~,+ ,] is the gene ra e t d interval on level n. As before, the first step 
is to extrapolate the numerical solution from each side of the generated interval 
to the other side. The extrapolation data are zlin;fk, u;fk+i, . . . . IL;+, I$;~, 
zl&, . ..) zgyk+,. However, if the numerical solution is evaluated by (2.3))(2.8), the 
treatment would affect the fields of other characteristics. The revision is as follows: 
:f=cC2q xj,+ll is an LSGI, we solve the Riemann problem RP(uJ’, _ i, uy;Ti) 
1 , . . . . k), and obtain a set of left middle states z4j’;li,* (i= 0, . . . . k) (as shown in 

Fig. 5.1). We replace the z$‘;Ti in (2.3)-(2.8) by these left middle states. If 
[-‘cj,, xi,+ 1] is a RSGI, we solve the Riemann problem RP(u;;~, I,$+:,) 
(i= 1 , . . . . k+ I), and replace the $‘;I, in (2.3)(2.8) by the corresponding right 
middle states u;; 1 i, * . 

If the original system (5.la) is linear with constant coefficients, such a handling 
is equivalent to applying the treatment in a held-by-field way; i.e., it is to do a 
field-by-field decomposition at first, and then to apply the treatment to each 
characteristic variable. But in the nonlinear case (such as the Euler system) they are 
different, especially when strong discontinuities are involved. The present one is 
more precise, for it involves a “nonlinear” field-by-field decomposition by solving 
an exact Riemann problem. 

The treatment of a CDGI should be as follows: Solve the Riemann problem 
RP(u; -i, uzZi) and get the left middle states uT;li,* (i= 0, . . . . kj, and solve the 
Riemann problems RP(u:;~, u; + i) and get the right middle states uJ;;~ * 
(i= 1, . ..? k+ 1). Replace u:Ti by ~;;f_~,,, and z~Z;~ by uzLi.* in (2.3)~-(2.8’). 
However, the practical used treatment is simpler than this one. The density is dis- 
continuous across the contact discontinuity, but the velocity and the pressure are 

FIGURE 5.1 
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continuous. Therefore, we only extrapolate p and take the original data for the 
velocity q and the pressure p across the CDGI. The examples presented in Section 6 
show that the treatment works well. 

q-i.; 
The movement of a generated interval is determined by keeping I$Ll small, where 
is the artificial term along the temporal direction. Because qJ.: PS a vector with 

three components now, iq-y, ( must be some norm of q:: A natural candidate is 

where qy;“? is a component of q;,. The three components of the system (5.1 I ma:{ 
have quite different scales; for this reason. the presently used I$,\ is 

where u”.“’ 1s the component of L$‘. 
The iolution to the Riemann problem RP(u.J’,, UX + i ) may have more than orke 

strong discontinuity. This situation occurs when two generated intervals of different 
kinds collide with each other. The corresponding generated interval IS referred as a 
node. A typical case is that the RP( u.7, , u;, + , ) contains a Ieft and a right shock with 
a middle state u*. The main idea in treating nodes is the consideration that there 
are more than one different generated intervals in C-X,!, .Y-,! + 1]V which overlap each 
other, and the treatment should be precisely applied to each one. Let’s use the 
above case to describe the algorithm. 

Suppose LX,.,, x~,] is the generated interval. We introduce two auxiliary initial 
value problems, of which the initial value of the first one has the left part of 1:” as 
its left part and the middle state U* as its right part with an LSGE LX:!, - .=$ + I ]> and 
the initial value of the second one has the right part of 2 as its right part and the 
middle state U* as its left part with an RSGI [.Y,,, -yi, + 1 ]. The numerical resuI’;s of 
these two problems determine the movements of the two generated intervals, which 
are located in the same cells for the first several time-steps until they separate, and 
then the middle state appears between them. Before the two generated interv-als 
separate, Ihe numerical solution is computed just as only one generated intervai 
exists. 

If the original system is a linear system with constant coefhcienrs, such a hand?ing 
is also equivalent to applying the treatment in a Geid-by-field way. The treatment 
is easily extended to the more complicated nodes for which the RPjz$. $, t L )‘s 
involve three different discontinuities. 

6. NUMERICAL EXPERIMENTS 

In this section some numerical results are presented to show the performance of 
our method. 
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-0 ,-: L- .‘. I 
0 -1.5 IB 35 , B 

T = 1.1 
FIG. 6.la. T=OS; T=0.65; T= 1.1 

EXAMPLE 1. The following initial value problem 

u,+ ; =o, 
0 

-l<x<l 
I (6.1) 

u(x, 0) = t + 5 sin 7rx 

is solved. The exact solution is smooth up to t = Z/X, then it develops a moving 
shock, which interacts with the rarefaction waves. The exact solution is obtained by 
Newton iteration. For details, see [4]. 

The Lax-Wendroff scheme is chosen as the underlying scheme, and A is taken to 
be 0.5. The parameter CI, which is used in the generation of generated intervals, is 
taken to be 0.1. The zeroth-order treatment is tested. 

In Figs. 6.la and b the numerical solution obtained with x and x - t version for 
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FIG. 6.lb. T=OS: TxO.65: T= 1.1 

dx = &, are displayed, where t is taken to be 0.5, 0.65 ( z 2/n, and 1.1. respectively. 
in Figs. 6.2a and b the results for As = & are displayed. 

In this example, the numerical solutions approximate the exact solution very weii 
in both smooth and nonsmooth parts. The discrete shock (or shocks) develops 
before 1= 2,/q and sometimes there are interactions of generated intervals; however, 
the treatment of interactions causes little damage to the smooth parts. 

The location of the discontinuity on each time level is computed by the high 
resolution technique described in Section 3. Tables and II compare the 1oca’;ions 
of the discrete and exact shocks. Table I displays the results of the x version for 
AX = & from the 14th to the 22nd time-step, while Table II displays the resuits of 
the s - r version for Ax = & from the 52nd to 88 th time-step. The locations of the 
discrete shocks in both examples are accurate. 
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T = 0.65 

..,LL,_,_! -1 B -1 5 De 

T= 1.1 

FIG. 6.2a. i-=0.5; T=O.65; T= 1.1. 

The x- f version has no shock transition point; in contrast, the x version has 
one shock transition point. Therefore, the x - t version has higher resolution for a 
shock than the x version. In addition, the x - t version is easier to program than 
the .x version, especially in dealing with interactions of generated intervals. 

Treatments higher than the zeroth-order one were also tested, andthe results are 
the same as for the zeroth-order treatment; occasionally, the results of the zeroth- 
order are a little better than those of high order. According to Remark 2.2, the 
zeroth-order treatment kills the consistency for it causes an L” truncation error of 
O(1). However, owing to the converging characteristics, a shock has a self- 
sharpening mechanism, which presents the 0( 1) error to be transported to the 
smooth region. That is why the zeroth-order treatment causes little damage to the 
smooth parts. 
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FIG. 6.2b. T=OS: T=0.65; T= I.1 

TABLE I 

Locations of Discrete and Exact Shocks 

n Discrete Exact 

14 -0.8241019 -0.5250000 
15 -0.8116784 -0.8125000 
16 -0.7993561 -0.8000000 
17 -0.7870850 -0.7875000 
18 -0.7748046 -0 775oOCi 
19 -0.7624528 -0.7625000 
20 -0.7499743 ~O.75OooOO 
21 -0.7369952 -0.7375000 
22 -0.7254016 -0.725ooo0 

- 
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TABLE II 

Locations of Discrete and Exact Shocks 

II Discrete Exact n Discrete Exact 

52 -0.8384687 -0.8375000 
53 -0.8350775 -0.8343570 
54 -0.8317347 -0.8312500 
55 -0.8284522 -0.828 1250 
56 -0.8231344 -0.8250000 
57 -0.8203193 -0.8218750 
58 -0.8174989 - 0.8187500 
59 -0.8176763 -0.8156250 
60 -0.8118547 -0.8125000 
61 -0.8090336 -0.8093750 
62 -0.8062074 -0.8062500 
63 -0.8033639 -0.8031250 
64 - 0.8004860 -0.8000000 
65 -0.7967674 -0.7968750 
66 -0.7938213 -0.7937500 
67 -0.7908556 -0.7906250 
68 -0.7878712 -0.787CoOO 
69 -0.7848648 -0.7843750 
70 -0.7818301 -0.7812500 

71 -0.7787599 -0.781250 
72 -0.7756485 -0.7750000 
73 -0.7723584 -0.7718570 
74 -0.7691954 -0.7687500 
75 -0.7660306 -0.7656250 
76 -0.7628636 -0.7625000 
77 -0.7596936 -0.7593750 
78 -0.7565193 -0.7562500 
79 -0.7533406 -0.7531250 
80 -0.7501586 -0.7500000 
81 -0.7470106 -0.7468750 
82 -0.7438717 -0.7437500 
83 -0.7407333 -0.7406250 
84 -0.7375951 -0.7375000 
85 -0.7344573 -0.7343750 
86 -0.7313206 -0.7312500 
87 -0.7281857 -0.7281’50 
88 -0.7250538 -0.7250000 

EXAMPLE 2. The following linear IVP is solved to test the x - t version treat- 
ment: 

z4, + z4, = 0 (6.2a) 

-x sin( $x2), -l<x<-f 

u,(x+O.5) = Isin(2nx)l (51 < ; (6.2b) 

2x - I- sin(3rrx)/6 i<x< 1 

uo(x+2)=z4()(x). (6.2~) 

The solution to the IVP contains three contact discontinuities and one weak 
discontinuity (i.e., discontinuity of derivative). The numerical results without 
treatment are almost unacceptable. 

The Lax-Wendroff scheme is again chosen as the underlying scheme, and A= 0.8. 
The treatment is used to track the discontinuities. The treatment is applied to the 
contact disontinuities as well as the weak discontinuity. The motivation for 
applying the treatment to the weak discontinuity is based on the consideration that 
preventing computation from crossing the discontinuity is also applicable to it. 
Because of the lack of converging characteristics, the numerical results are sensitive 
to the order of the treatment. The higher the order, the better the resolution of the 
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discontinuities. Figures 6.3 and 6.4 present the results obtaine with tire second- 
order treatment for Ax = $ and d.~ = $, respectively. The figures show that the 
results are quite good, especially the numerical solutions for LI.X = & at both ! = 2 
and 1= 8 are very close to the exact solution. 

The numerical solution for Ax = & at t = 32 and 64 are computed in order to test 
the long-term performance of the treatment. The results are also presented in 
Fig. 6.4. They show that the long-term performance of the treatment is also good. 
Particularly at F = 64, except for the second one, the discontinuities are well 
resolved, even though the smooth part of the numerical solution has been seriously 
damped. 

There is an obvious deviation of the second discontinuity and “‘sinking” on its 
right. Seemingly, the “sinking” causes the deviation of the discontinuity. The 
problem is not understood. A possible cause of this ‘“sinking” midht be the “wrong 
up-wind computation” at the right endpoint of the generated interval. An 
appropriate evaluation of I$’ should mainly obtain information from the left side 
because of the positive speed of wave propagation. ut at this endpoint, the use of 
the extrapolation data makes the evaluation essentially obtain information from the 
right side. 

Tn the following examples of the Euler system, 7 = 1.4, the second-order .I: - I 
version is used to track the discontinuities, and the tax-Wendroff scheme is chosen 
as the underlying scheme. 

EXAMPLE 3. The Riemann problems for the Euler equations of gas dynamics 
(5.1) with the following two initial conditions are solved: 

(Pi, 4,. PI)= (1.. 0.3 1.1 

(p,., q,-, p,.) = (0.125, a, 0.1) 
(6.3) 
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T = 2. T=S. 

.- 
08 85 

T = 64. 

FIGURE 6.4 

and 

(p,, qr, p,)= (0.445, 0.698, 3.528) 

(P,, qr> p,)= (0.5,0., 0.571). 
(6.4) 

They are known as Sod’s problem and Lax’s problem, respectively. Both problems 
have a left rarefaction wave, a right shock, and a contact discontinuity. 

The node treatment works in the first several time-steps to separate each different 
wave. Inspired by Example 2, in which the treatment is also applied to the weak 
discontinuity, we apply the treatment to the edges of the rarefaction wave as well. 
The naive application is unacceptable; if we did, we could get a rarefaction shock. 
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FIGURE 6.5b 
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Instead, suppose that the back edge of the left rarefaction is treated. Since the 
underlying scheme is a 3-point scheme, the extrapolated data used on each side of 
the generated interval are only u;’ and u:;, . In order to expand the rarefaction 
wave, we replace the u:;;~ by the original datum u;,+ i. The back edge of the right 
rarefaction wave can be treated in the same way. The locations of the back edges 
captured by the treatment are not very accurate; moreover, the analogue treatment 
to the front edge of the rarefaction wave fails to capture the weak discontinuities 
(it disappears after several time-steps). A more proper treatment of the rarefaction 
wave is under investigation. 

For Sod’s problem, Ax = 0.01 and CFL = 0.4. The numerical result for the density 
is displayed in Fig. 6Sa. Some weak oscillation appears in the smooth region. When 
CFL =0.8, the oscillation is stronger. It is obviously caused by the underlying 
scheme, which is sensitive to oscillation. To reduce it, a second-order viscosity term 
introduced in [4] is added to the smooth part. The corresponding numerical result, 
which has no oscillation, is displayed in Fig. 6.5b. 

For the Lax problem, Ax = 0.01 and CFL = 0.8. The numerical result is displayed 
in Fig. 6.6. No oscillation occurs in this example. 



hAhiPLE 4 (The blast waves problem). The Euler system with the initial co2di- 
tions 

is sdved, where 

PI = Pm = pr = 1.. q, = q,>? = qr = 0 
i 6.5 J 

p[= lo’, plri = lo-‘. p, = l@, 

and the two boundaries are assumed to be solid wails. See [12] for details of the 
solution and comparison of the performance of various schemes. 

3:; = 0.005, and the treatment is also applied to the back edges of the rarefacrion 
waves near the waves’ centers to expand them. CFL = 0.7 rather than 0.8: the 
reason is that the treatment of the interactions of discontinuities kvolves middle 
states, which do not appear in the numerical solution and may damage the CFL 
condition if CFL is too big. The numerical sol&ions at f = 0.026 and O.G38 a.~ 
presented in Figs. 5.7a and b. The soiid lines in these figures are the numericsi 

FIGURE &la 



solutions of a fourth-order EN0 scheme with 800 space points, which is considered 
as a “converged solution.” 

At around t = 0.032 there isa rarefaction wave with two front edges (its right edge 
movesto the right), which results from the collision of a shock and a contact dis- 
continuity. The failure of the treatment to capture the weak discontinuities causes 
a rarefaction shock. In order to expand the rarefaction wave, a first-order viscosity 
is added to the underlying scheme (hence it is still a 3-point scheme) and the order 
of the treatment is reduced to the first order for 20 time-steps there. This creates 
some error in the smooth part, especially in the velocity. The “sinking” 
phenomenon is still seen in the right sides of some contact discontinuities, which 
might be caused by the so-called “wrong up-wind computation.” 
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